Cotas azules y negras. Si la cota es azul es dirigida y no puede modificarse (bien se puede modificar el valor, pero no cambia el dibujo) la seleccionas y das al icono del "candadito" para cambiarla a negra, ahora si se modifica si cambia el dibujo, pero para una misma linea solo puede haber una cota negra.
Cuando haces "desplazar" SE coloca automaticamente una cota negra señalando la distancia, si luego tú acotas esta distancia la cota es azul (ya hay una cota negra) y aunque quieras no puedes cambiarla a negra porque ya hay una.
Cuando acotas si el icono del "candadito" no está marcada pone las cotas azules, marcalo y te pondrá las cotas en negro, si es que no hay ya una cota negra.
viernes, 19 de noviembre de 2010
cota roja
Se denomina Cota roja de un punto a la diferencia entre la cota que tiene en la rasante y la que tiene en la traza. Es decir, es la cota en el proyecto menos la cota en el terreno.
Es el dato para llevar a cabo el replanteo altimétrico.
La cota roja puede ser:
Es el dato para llevar a cabo el replanteo altimétrico.
La cota roja puede ser:
- Positiva (por ejemplo en A): proyecto a mayor cota que el terreno * terraplén de tierras.
- Negativa (por ejemplo en B): proyecto a menor cota que el terreno * desmonte de tierras.
- Realizar el proyecto sobre la cartografía base: se proyecta la planta del proyecto.
- Replantear la planta: se obtiene la traza a lo largo del eje del proyecto, el perfil longitudinal del terreno.
- Sobre la traza se proyecta la altimetría de la obra, la rasante. Comparando cotas de rasante y de traza, se calculan las cotas rojas de los puntos secuenciales.
- Se realiza el replanteo altimétrico.
jueves, 18 de noviembre de 2010
En toda obra de arquitectura o ingeniería, ya sea para una vivienda, un edificio o la apertura de una calle se requiere tomar niveles o medir desniveles. Esta operación se realiza con el Nivel de Anteojo, que apoya sobre un trípode y puede girar en forma horizontal solamente para la lectura gruesa de ángulos horizontales. Se centra y se nivela el instrumento con un nivel de burbuja incorporado circular o tubular.La lectura de niveles se realiza apuntando el hilo Axial del Nivel de Anteojo sobre una ‘mira’ o regla graduada en centímetros y resaltada con colores rojo y negro para una perfecta visualización, y que debe permanecer perfectamente vertical al momento de las lecturas. Las miras tienen generalmente 4 ó 5 metros de largo. La utilización del Nivel automático se utiliza para terrenos de no mucha pendiente o desnivel, ya que en caso contrario se utiliza el Teodolito, que puede medir ángulos horizontales y verticales con gran precisión.
Las distancias se toman realizando lectura estadimétrica (sobre la mira) o bien modernamente en forma digital con distanciómetro laser incorporado. La operación de medir alturas, distancias y angulos horizontales ó verticales de puntos sobre el terreno se llama ‘Taquimetría’.
La ‘Altura Instrumental’ es la medida desde el piso al anteojo.
Las distancias se toman realizando lectura estadimétrica (sobre la mira) o bien modernamente en forma digital con distanciómetro laser incorporado. La operación de medir alturas, distancias y angulos horizontales ó verticales de puntos sobre el terreno se llama ‘Taquimetría’.
La ‘Altura Instrumental’ es la medida desde el piso al anteojo.
El replanteo es el proceso inverso a la toma de datos, y consiste en plasmar en el terreno detalles representados en planos, como por ejemplo el lugar donde colocar pilares de cimentaciones, anteriormente dibujados en planos. El replanteo, al igual que la alineación, es parte importante en la topografía. Ambos son un paso importante para luego proceder con la realización de la obra.
La fotogrametría es una técnica para determinar las propiedades geométricas de los objetos y las situaciones espaciales de seres vivos a partir de imágenes fotográficas. Puede ser de corto o largo alcance.
La palabra fotogrametría deriva del vocablo "fotograma" (de "phos", "photós", luz, y "gramma", trazado, dibujo), como algo listo, disponible (una foto), y "metrón", medir.
Por lo que resulta que el concepto de fotogrametría es: "medir sobre fotos". Si trabajamos con una foto podemos obtener información en primera instancia de la geometría del objeto, es decir, información bidimensional. Si trabajamos con dos fotos, en la zona común a éstas (zona de solape), podremos tener visión estereoscópica; o dicho de otro modo, información tridimensional.
Básicamente, es una técnica de medición de coordenadas 3D, también llamada captura de movimiento, que utiliza fotografías u otros sistemas de percepción remota junto con puntos de referencia topográficos sobre el terreno, como medio fundamental para la medición.
La palabra fotogrametría deriva del vocablo "fotograma" (de "phos", "photós", luz, y "gramma", trazado, dibujo), como algo listo, disponible (una foto), y "metrón", medir.
Por lo que resulta que el concepto de fotogrametría es: "medir sobre fotos". Si trabajamos con una foto podemos obtener información en primera instancia de la geometría del objeto, es decir, información bidimensional. Si trabajamos con dos fotos, en la zona común a éstas (zona de solape), podremos tener visión estereoscópica; o dicho de otro modo, información tridimensional.
Básicamente, es una técnica de medición de coordenadas 3D, también llamada captura de movimiento, que utiliza fotografías u otros sistemas de percepción remota junto con puntos de referencia topográficos sobre el terreno, como medio fundamental para la medición.
La Taquimetría es un método de medición rápida de no mucha precisión. Se utiliza para el levantamiento de detalles donde es difícil el manejo de la cinta métrica, para proyectos de Ingeniería Civil u otros.
No era un método de un uso muy extendido, ya que la mira paraláctica o estadía de INVAR tenía un costo excesivo, pero su alcance y su precisión lo hacían especialmente útil en trabajos topográficos, aunque ha caído en desuso con el advenimiento de los métodos electrónicos, los electrodistanciómetros, las estaciones totales y los instrumentos basados en el G.P.S.
Consiste en la resolución de un triángulo rectángulo angosto del que se mide el ángulo más agudo; el cateto menor es conocido ya que es la mitad de una mira (llamada paraláctica), horizontal fabricada en un material sumamente estable, generalmente Invar, de dos metros de largo (se eligió esta longitud de 2,00 m porque la mitad es 1,00 m lo que luego facilita el cálculo); y el cateto mayor es la distancia (D) que queremos averiguar, la cual se deberá calcular.
Taquimetría corriente de mira vertical
Es la medición indirecta de distancia con teodolito y mira vertical. Utilizando un teodolito que en su retículo tenga los hilos estadimétricos, se toman los ángulos verticales de dos puntos de la mira. Con una simple ecuación se calcula la distancia requerida. Su precisión es de 1:750. 100Taquimetría tangencial de mira vertical
Como en el caso de Taquimetría corriente con mira vertical, se utilizan los mismos instrumentos pero de manera diferente. Lleva el nombre de tangencial porque, para la determinación de las distancias, las fórmulas utilizan la función trigonométrica Tangente. Este método es un poco más preciso que la taquimetría corriente. Su precisión es de 1:750 a 1:1500.Taquimetría de mira horizontal
Medición indirecta de distancia con teodolito y mira horizontal, o conocida también como estadía de invar. En este método solo se pueden medir distancias horizontales. Su precisión es de 1:4000 a 1:50000. También es llamado Método paraláctico, por basarse en la resolución de un ángulo agudo muy pequeño, generalmente menor a 1 grado, como los ángulos de paralaje astronómico.No era un método de un uso muy extendido, ya que la mira paraláctica o estadía de INVAR tenía un costo excesivo, pero su alcance y su precisión lo hacían especialmente útil en trabajos topográficos, aunque ha caído en desuso con el advenimiento de los métodos electrónicos, los electrodistanciómetros, las estaciones totales y los instrumentos basados en el G.P.S.
Consiste en la resolución de un triángulo rectángulo angosto del que se mide el ángulo más agudo; el cateto menor es conocido ya que es la mitad de una mira (llamada paraláctica), horizontal fabricada en un material sumamente estable, generalmente Invar, de dos metros de largo (se eligió esta longitud de 2,00 m porque la mitad es 1,00 m lo que luego facilita el cálculo); y el cateto mayor es la distancia (D) que queremos averiguar, la cual se deberá calcular.
declinacio magnetica
La declinación magnética en un punto de la tierra es el ángulo comprendido entre el norte magnético local y el norte verdadero (o norte geográfico). En otras palabras, es la diferencia entre el norte geográfico y el indicado por una brújula (el denominado también norte magnético). Por convención, la declinación es considerada de valor positivo cuando el norte magnético se encuentra al este del norte verdadero, y negativa si se encuentra al oeste.
El término variación magnética es equivalente al de declinación y es empleado en algunas formas de navegación, entre ellas la aeronáutica. Las curvas de igual valor de declinación magnética se denominan curvas Isogónicas; entre ellas, aquéllas que poseen un valor nulo se denominan curvas agónicas (una brújula ubicada en una posición comprendida en una curva agónica apuntará necesariamente al norte verdadero, ya que su declinación magnética es nula)'.
Cambio de la declinación en el tiempo y en el espacio La declinación magnética no es siempre de igual valor; depende del lugar en el que se ubique, llegando a variar sensiblemente de un lugar a otro. Por ejemplo, un viajero que se mueva desde la costa Oeste de Estados Unidos a la costa Este puede sufrir una variación de la declinación magnética de entre veinte y treinta grados. El valor de la declinación magnética varía, además, a lo largo del tiempo. De esta forma, por ejemplo, una brújula colocada en el centro de Padua en 1796 no marca el mismo valor que si se coloca exactamente en el mismo sitio en la actualidad.
En la mayoría de los lugares la variación es debida al flujo interno del núcleo de la tierra. En algunos casos se debe a depósitos subterráneos de hierro o magnetita en la superficie terrestre, que contribuyen fuertemente a la declinación magnética. De forma similar, los cambios seculares en el flujo interno del núcleo terrestre hacen que haya un cambio en el valor de la declinación magnética a lo largo del tiempo en un mismo lugar.
La declinación magnética en un área dada cambia muy lentamente dependiendo de lo alejado que se encuentre de los polos magnéticos, y puede llegar a mostrar una velocidad de cambio de entre 2 y 25 grados por cada cien años. Este cambio, que resulta insignificante para la mayoría de los viajeros, puede ser importante para los estudios de los viejos mapas.
El término variación magnética es equivalente al de declinación y es empleado en algunas formas de navegación, entre ellas la aeronáutica. Las curvas de igual valor de declinación magnética se denominan curvas Isogónicas; entre ellas, aquéllas que poseen un valor nulo se denominan curvas agónicas (una brújula ubicada en una posición comprendida en una curva agónica apuntará necesariamente al norte verdadero, ya que su declinación magnética es nula)'.
Cambio de la declinación en el tiempo y en el espacio La declinación magnética no es siempre de igual valor; depende del lugar en el que se ubique, llegando a variar sensiblemente de un lugar a otro. Por ejemplo, un viajero que se mueva desde la costa Oeste de Estados Unidos a la costa Este puede sufrir una variación de la declinación magnética de entre veinte y treinta grados. El valor de la declinación magnética varía, además, a lo largo del tiempo. De esta forma, por ejemplo, una brújula colocada en el centro de Padua en 1796 no marca el mismo valor que si se coloca exactamente en el mismo sitio en la actualidad.
En la mayoría de los lugares la variación es debida al flujo interno del núcleo de la tierra. En algunos casos se debe a depósitos subterráneos de hierro o magnetita en la superficie terrestre, que contribuyen fuertemente a la declinación magnética. De forma similar, los cambios seculares en el flujo interno del núcleo terrestre hacen que haya un cambio en el valor de la declinación magnética a lo largo del tiempo en un mismo lugar.
La declinación magnética en un área dada cambia muy lentamente dependiendo de lo alejado que se encuentre de los polos magnéticos, y puede llegar a mostrar una velocidad de cambio de entre 2 y 25 grados por cada cien años. Este cambio, que resulta insignificante para la mayoría de los viajeros, puede ser importante para los estudios de los viejos mapas.
GPS
El GPS convencional presenta dificultades a la hora de proporcionar posiciones precisas en condiciones de baja señal. Por ejemplo, cuando el aparato está rodeado de edificios altos (como consecuencia de la recepción de múltiples señales rebotadas) o cuando la señal del satélite se ve atenuada por encontrarnos con obstáculos, dentro de edificios o debajo de árboles. De todos modos algunos de los nuevos aparatos GPS reciben mejor las señales de poca potencia y funcionan mejor en estas condiciones que aparatos más antiguos y menos sensibles.
Además, la primera vez que los receptores GPS se encienden en tales condiciones, algunos sistemas no asistidos no son capaces de descargar información de los satélites GPS como el "almanaque" y la "efemérides" (términos traducidos del inglés), haciéndolos incapaces de funcionar, triangular o posicionarse hasta que se reciba una señal clara durante al menos un minuto. Este proceso inicial, denominado primer posicionamiento o posicionamiento inicial (del inglés TTFF (Time To First Fix) o tiempo para el primer posicionamiento), suele ser muy largo en general, incluso según las condiciones, de minutos.
Un receptor A-GPS o GPS asistido puede solucionar estos problemas de diversas formas mediante el acceso a un Servidor de Asistencia en línea (modo "on-line") o fuera de línea (modo "off-line"). Los modos en línea acceden a los datos en tiempo real, por lo que tienen la necesidad de tener una conexión de datos activa con el consiguiente coste de la conexión. Por contra, los sistemas fuera de línea permiten utilizar datos descargados previamente.
Por tanto, algunos dispositivos A-GPS requieren una conexión activa (modo en línea) a una red celular de teléfono (como GSM) para funcionar, mientras que en otros simplemente se hace el posicionamiento más rápido y preciso, pero no se requiere conexión (modo fuera de línea). Los dispositivos que funcionan en modo fuera de línea ("off-line"), descargan un fichero mientras tienen acceso a la red (ya sea a través de una conexión de datos GPRS, Ethernet, WIFI, ActiveSync o similar) que se almacena en el dispositivo y puede ser utilizado por éste durante varios días hasta que la información se vuelve obsoleta y se nos avisa de que es preciso actualizar los datos o en lugares sin conexión de datos. [2] [3]
En cualquier caso, el sistema de GPS asistido utilizará los datos obtenidos, de una u otra forma, de un servidor externo y lo combinará con la información de la celda o antena de telefonía móvil para conocer la posición y saber qué satélites tiene encima. Todos estos datos de los satélites están almacenados en el servidor externo o en el fichero descargado, y según nuestra posición dada por la red de telefonía, el GPS dispondrá de los datos de unos satélites u otros y completará a los que esté recibiendo a través del receptor convencional de GPS, de manera que la puesta en marcha de la navegación es notablemente más rápida y precisa.
Por tanto:
Cuando trabajamos en modo en línea ("on-line"):
El servidor de asistencia puede hacer saber al teléfono su posición aproximada conociendo la celda de telefonía móvil por la que se encuentra conectado a la red celular.
El servidor de asistencia recibe la señal de satélite perfectamente, y posee grandes capacidades de cómputo, por lo que puede comparar señales recibidas procedentes del teléfono y determinar una posición precisa para informar al teléfono o a los servicios de emergencia de tal posición.
Puede proveer datos orbitales de los satélites GPS al teléfono, haciéndolo capaz de conectarse a los satélites, cuando de otra manera no podría, y calcular su posición de manera autónoma.
Puede tener mejor conocimiento de las condiciones ionosféricas y otros errores que podrían afectar la señal GPS que el teléfono, dotándolo de un cálculo más preciso de su posición. (Vea también Wide Area Augmentation System)
Como beneficio adicional, puede reducirse tanto la utilización de CPU como la cantidad de líneas de código que se necesiten calcular por parte del teléfono, ya que muchos procesos se realizan en el servidor de asistencia (no es una gran cantidad de procesamiento para un receptor GPS básico - muchos de los primeros receptores GPS corrían sobre Intel 80386 a 16 Mhz o hardware similar).
Cuando trabajamos en modo fuera de línea ("off-line"):
El teléfono obtiene su posición aproximada conociendo la celda de telefonía móvil por la que se encuentra conectado a la red celular y se la entrega al sistema integrado en el dispositivo.
El GPS asistido, que habrá obtenido previamente del servidor de asistencia los datos, determina qué satélites tenemos encima y obtiene la posición completando los datos parciales que recibe el receptor GPS convencional.
Algunos sistemas funcionan tanto en un modo como en otro (dependiendo de si tenemos activa una conexión de datos o no), resultando muy versátiles.
Además, la primera vez que los receptores GPS se encienden en tales condiciones, algunos sistemas no asistidos no son capaces de descargar información de los satélites GPS como el "almanaque" y la "efemérides" (términos traducidos del inglés), haciéndolos incapaces de funcionar, triangular o posicionarse hasta que se reciba una señal clara durante al menos un minuto. Este proceso inicial, denominado primer posicionamiento o posicionamiento inicial (del inglés TTFF (Time To First Fix) o tiempo para el primer posicionamiento), suele ser muy largo en general, incluso según las condiciones, de minutos.
Un receptor A-GPS o GPS asistido puede solucionar estos problemas de diversas formas mediante el acceso a un Servidor de Asistencia en línea (modo "on-line") o fuera de línea (modo "off-line"). Los modos en línea acceden a los datos en tiempo real, por lo que tienen la necesidad de tener una conexión de datos activa con el consiguiente coste de la conexión. Por contra, los sistemas fuera de línea permiten utilizar datos descargados previamente.
Por tanto, algunos dispositivos A-GPS requieren una conexión activa (modo en línea) a una red celular de teléfono (como GSM) para funcionar, mientras que en otros simplemente se hace el posicionamiento más rápido y preciso, pero no se requiere conexión (modo fuera de línea). Los dispositivos que funcionan en modo fuera de línea ("off-line"), descargan un fichero mientras tienen acceso a la red (ya sea a través de una conexión de datos GPRS, Ethernet, WIFI, ActiveSync o similar) que se almacena en el dispositivo y puede ser utilizado por éste durante varios días hasta que la información se vuelve obsoleta y se nos avisa de que es preciso actualizar los datos o en lugares sin conexión de datos. [2] [3]
En cualquier caso, el sistema de GPS asistido utilizará los datos obtenidos, de una u otra forma, de un servidor externo y lo combinará con la información de la celda o antena de telefonía móvil para conocer la posición y saber qué satélites tiene encima. Todos estos datos de los satélites están almacenados en el servidor externo o en el fichero descargado, y según nuestra posición dada por la red de telefonía, el GPS dispondrá de los datos de unos satélites u otros y completará a los que esté recibiendo a través del receptor convencional de GPS, de manera que la puesta en marcha de la navegación es notablemente más rápida y precisa.
Por tanto:
Cuando trabajamos en modo en línea ("on-line"):
El servidor de asistencia puede hacer saber al teléfono su posición aproximada conociendo la celda de telefonía móvil por la que se encuentra conectado a la red celular.
El servidor de asistencia recibe la señal de satélite perfectamente, y posee grandes capacidades de cómputo, por lo que puede comparar señales recibidas procedentes del teléfono y determinar una posición precisa para informar al teléfono o a los servicios de emergencia de tal posición.
Puede proveer datos orbitales de los satélites GPS al teléfono, haciéndolo capaz de conectarse a los satélites, cuando de otra manera no podría, y calcular su posición de manera autónoma.
Puede tener mejor conocimiento de las condiciones ionosféricas y otros errores que podrían afectar la señal GPS que el teléfono, dotándolo de un cálculo más preciso de su posición. (Vea también Wide Area Augmentation System)
Como beneficio adicional, puede reducirse tanto la utilización de CPU como la cantidad de líneas de código que se necesiten calcular por parte del teléfono, ya que muchos procesos se realizan en el servidor de asistencia (no es una gran cantidad de procesamiento para un receptor GPS básico - muchos de los primeros receptores GPS corrían sobre Intel 80386 a 16 Mhz o hardware similar).
Cuando trabajamos en modo fuera de línea ("off-line"):
El teléfono obtiene su posición aproximada conociendo la celda de telefonía móvil por la que se encuentra conectado a la red celular y se la entrega al sistema integrado en el dispositivo.
El GPS asistido, que habrá obtenido previamente del servidor de asistencia los datos, determina qué satélites tenemos encima y obtiene la posición completando los datos parciales que recibe el receptor GPS convencional.
Algunos sistemas funcionan tanto en un modo como en otro (dependiendo de si tenemos activa una conexión de datos o no), resultando muy versátiles.
Suscribirse a:
Entradas (Atom)